

HDPE PIPING SYSTEMS

www.watech.co.in

OUR COMPANY

With over 30 years of experience in the field of water supply, drainage, Sanitary Fixtures, we are among the leading brands in innovative plumbing solution products We have developed quality products with innovative designs and water saving technology at an affordable price range with latest equipment's, highly skilled work-force and quality parameters as per internationally acceptable norms, our products are 100% trouble free, environment friendly and durability. All our products are made to last.

measures at every stage of the production process to ensure quality. Our products are specially designed considering Indian water conditions and are marketed throughout the country by our strong dealer network. We cater to requirements in the domestic and international market. We offer complete solutions with polyethylene (PE) piping for new development project, rehabilitation of existing water and sewer systems, PE pipes for water distribution and waste water disposal systems, will not only eliminate expensive water loss, but it will reduce water contamination and harmful waste pollution.

~watech PE (Polyethylene) Pipe.

Even in heavy-loaded areas, where only the strongest - Galvanized iron, Ductile iron, Cement Pipe survive, Plastic in the form of HDPE has scored beyond doubt as an ideal substitute. HDPE is today, the internationally preferred piping material across an unbelievable range of applications (where strength & long life are key requirements). HDPE is also capable of handling even semi-solid and gaseous effluents and displays unmatched resistance to corrosive chemicals. In other words where metal, cement and other forms of plastics fail to perform, HDPE pipes are excellent performer.

pipelines available and by far the most versatile. Polyethylene is a wax like thermoplastic with a density varying from a range of 934 Kg/m3 to 960 Kg/m3 which is less than that of water. The only two additives that are added to polyeth-ylene are Carbon black with a limit of 2-3% to add some reinforcing effect to increase its weathering properties and some Anti-Oxidant to a limit of 0.3%. We mostly use black pre-compounded PE material. HDPE having comparatively high molecular weight is high in abrasion resistance and impact strength. It is also very good in stress cracking resistance and has low creep rupture properties. It is excellent in insulation properties over a wide range of frequencies and good chemi-cal properties.

Range Ø20mm (0.5") to 630 mm (24") with 2.5 to 16 kg/cm²

Standards IS 4984, ISO 4427, IS 14333, DIN 8074/75

Length Avl. in straight lengths 6 MTR in all sizes & in Coils upto 90mm OD size.

Material

◆ PE80 ◆ PE100

Applications

- Drinking Water Supply
- Lift & Gravity Irrigation
- Drip & Sprinkler Irrigation
- Infrastructure, Building & Construction Industry
 - > Pumping Main & Distribution Lines
 - > Suction & Delivery Pipes
 - > Transporting industrial liquids, especially hazardous chemicals.
 - > Mining

PE PIPE STANDARD

WALL THICKNESS CHART FOR HDPE PIPE AS PER IS: 4984 / IS: 14333

O.D.	PN 2.5		PN4			PN6			PN8		PN 10			PN 12.5			PN 16		
		PE-80		PE-80		PE-80	PE-100		PE-80	PE-100		PE-80	PE-100		PE-80	PE-100		PE-80	PE-100
(mm)		Minimum Wall -Thickness of Pipes (mm)																	
20	-	-	-		-		3-2	-	E.		-		-		2.3		140	2.8	2.3
25	-	-	-	-	4	.(=)	2 + 2	2	-	140		2.3		-	2.8	2.3	-	3.5	2.9
32	_	-	-	-	Ξ	121	121	2	2.4	2	12	3.0	2.4	-	3.6	2.9	-	4.5	3.7
40	-	9	3	E	ĕ	2.3	-	ĕ	3.0	2.4	(5	3.7	3.0	3	4.5	3.7	-	5.6	4.6
50	-	-		2.3	-	2.9	2.3	-	3.8	3.0		4.6	3.7		5.6	4.6	-	6.9	5.7
63	-	-	(m)	2.5	*	3.6	2.9	*	4.7	3.8	9	5.8	4.7		7.0	5.7	-	8.7	7.1
75	-	-	-	2.9	-	4.3	3.5		5.6	4.5	-	6.9	5.6	-	8.4	6.8	-	10.4	8.5
90	-	2.3	-	3.5	-	5.1	4.1	-	6.7	5.4	-	8.2	6.7	-	10.0	8.2	-	12.5	10.2
110	2	2.7	-	4.3	2	6.3	5.0	~	8.2	6.6	12	10.0	8.1	-	12.3	10.0	_	15.2	12.4
125	-	3.1	3	4.9	÷	7.1	5.7	Ē	9.3	7.5	(11.4	9.2	3	13.9	11.3	-	17.3	14.1
140	7	3.5		5.4	=	8.0	6.4	ā	10.4	8.4		12.8	10.3		15.6	12.7	-	19.4	15.8
160	-	4.0	()=)	6.2	Ψ.	9.1	7.3	-	11.9	9.6	,	14.6	11.8	() (17.8	14.5) - 1	22.1	18.1
180	-	4.4		7.0	-	10.2	8.2	-	13.4	10.8	114	16.4	13.3	-	20.0	16.3	-	24.9	20.3
200	-	4.9	-	7.7	2	11.4	9.1	Ψ.	14.9	12.0	_	18.2	14.8	-	22.3	18.1	-	27.6	22.6
225	225	5.5	-	8.7	2	12.8	10.3	<u>=</u>	16.7	13.5	V2:	20.5	16.6	-	25.0	20.4	-	31.1	25.4
250	-	6.1	-	9.7	- 5	14.2	11.4	$\overline{\overline{\alpha}}$	18.6	15.0	-	22.8	18.4	-	27.8	22.6	-	34.5	28.2
280	-	6.9	1000	10.8	n	15.9	12.8	=	20.8	16.8		25.5	20.6	1000	31.2	25.3	-	38.7	31.6
315	π	7.7	: **	12.2	₩.	17.9	14.4		23.4	18.9	, -	28.7	23.2	: m	35.0	28.5	-	43.5	35.5
355	-	8.7	(-)	13.7	4	20.1	16.2	-	26.3	21.2	100	32.3	26.2	-	39.5	32.1	-	49.0	40.0
400	-	9.8	-	15.4	2	22.7	18.2	2	29.7	23.9	1	36.4	29.5	-	44.5	36.2	_	55.2	45.1
450	-	11.0	-	17.4	100	25.5	20.5	=	33.4	26.9		41.0	33.1	-	50.0	40.7	-	-	50.8
500	-	12.2	-	19.3	5	28.4	22.8	÷	37.1	29.9	÷	45.5	36.8	-	55.6	45.2	-	(5)	56.4
560	-	13.7	10 0 0	21.6	=	31.7	25.5	=	41.5	33.5	100	51.0	41.2	1000	280	50.6	-	3.5	-
630	-	15.4		24.3	-	35.7	28.7		46.7	37.7	0	57.3	46.4	-		56.9	-		-
710	-	17.4	(#)	27.4	ω.	40.2	32.3	~	52.6	42.4	1	12	52.3	-	(w)	2	-	:23	2
800	-	19.6	-	30.8	2	45.3	36.4	72	-	47.8	72	9 <u>2</u> 2.	58.9	-	12	-	_		2
900	-	22.0	-	34.7	2	51.0	41.0	=		53.8		-	23	-		8	-	*	3
1000	1 7. 34	24.4	(7.	38.5	77	56.7	45.5	-	270	(5)	7/5	10.70		.7.	-	(5.)	-	3.50	

Note: On demand other Pressure class & diameter are available.

DOUBLE WALLED CORRUGATED PIPES

watech

DWC PIPES FOR ELECTRICAL APPLICATION

outer wall for excellent diametrical stiffness, and smooth inner layer for facilitating easy cable insertion. It is available in coil form (upto 63 mm OD) and in straight length. The product is widely utilised among the various Government Departments, Railway Authorities, Public. Works Department, telecommunication Department, Development Authorities, Airport Authorities, State Electricity Boards, Power Distribution Companies, Solar Installations etc. for underground cable protection.

STANDARD SPECIFICATIONS

- · As Per IS: 16205 Part-24 (Earlier IS: 14930 Part-2)
- · BSNL TSEC: GR No.: TEC/GR/FA/DWC-034/02
- · RDSO/SPN/204/2011 Ver. 1.1 with Latest Amendments
- · IEC 61386 (Part-24)

STANDARD LENGTHS

Coil: 40 to 63mm (length- 100/200m)

· Straight Bar: 40 to 315 mm (length-6m)

COMPRESSION CLASS

Type 450N & Type 750N Compressive Strength

STANDARD COLOURS

Black/Black and Orange/Orange

SALIENT FEATURES

Excellent loadbearing capacity

Abrasion resistant

Suitable for aggressive climatic conditions

Flexible and fatigue resistant

Chemically inert

Corrugated profile gives excellent soil bonding

DWC PIPES FOR SEWER APPLICATION

watech is an innovative product aptly described as structured wall piping system of PE/PP with smooth internal and corrugated (profiled) extternal surface. watech pipe has corrugated (profiled) outer wall giving it excellent ring stiffness.

The inner wall which is fused with outer wall is smooth which facilitates efficient flow of liquids/slurry. Unlike plain pipes, vehicular traffic does not deform the pipe. Its moderate flexibility can align with gradually bending paths.

watech* stands apart from other conventional options due to number of advantages to end users and contractors.

Available Sizes
600 mm

Standard Lengths: 6 Mtr. Length

Specification: As per IS-16098-II & ISO-21138 part-III (Stiffness Class: SN 4 & SN 8)

APPLICATION

- · Sewerage & Drainage
- · Surface Drainage
- Sub-surface Drainage
 (Farm Drainage and Sports Field Drainage)
- · Culverts & Highways Drainage
- · Construction site waste water Drainage
- · Rain Water Harvesting
- · Storm Water Drainage

ADVANTAGES OF DWC

- · Saves in Raw Material hence light weight
- · Excellent Ring Stiffness
- · Smooth inner wall, hence minimum Friction loss
- · Even when bent, the roundness of pipe is retained
- Moderate flexibility takes care of Soil Settlement, if any
- · Takes heavy earth loads
- Very easy jointing

WATECH TRUNKY PROJECTS

WATECH HDPE PIPES INSTALLATION SERVICES

team for complete laying and jointing work of HDPE pipes/fittings and provide connection with existing or proposed system on turnkey basis.

vast experience in the project work include water supply, floating pipes, effluent treatment, chemical/mine, submerging etc. projects. Pipe/fittings jointing is done by state-of-the-art automatic butt welding and Ef machines.

Typical House Service Connection

LANDSCAPE IRRIGATION SYSTEM

SERVICES

From commercial landscape design to development, maintenance to enhancements, our comprehensive services make managing outdoor spaces effortless.

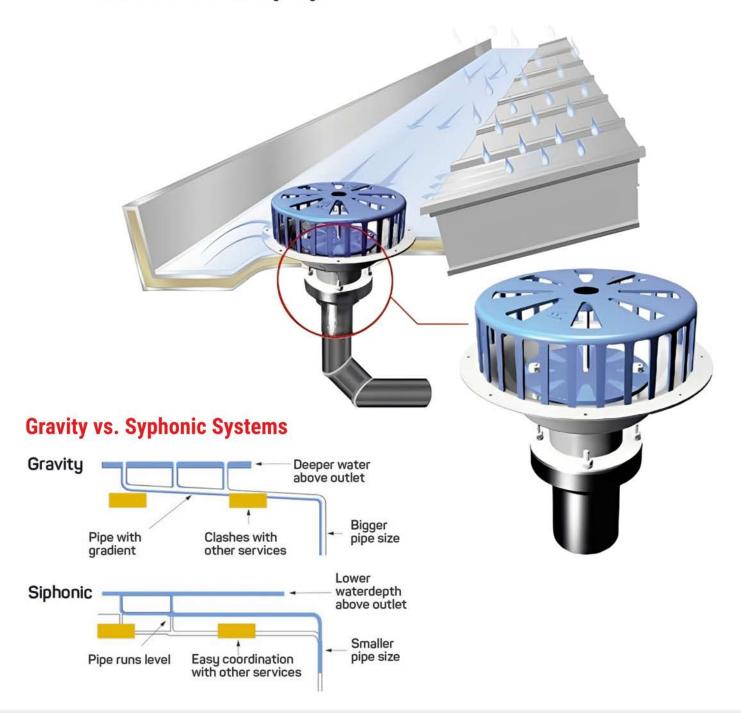
MARKETS

Partner with a commercial landscape provider with years of experience creating exceptional landscapes in your industry.

RESOURCES

Inspiration, solutions and thought leadership are at your fingertips. Search our library of commercial landscaping resources.

We are as water undertake Garden landscaping irrigation system as trunky project, including Design, supply and installation of the required system. Ideally irrigation system useful for all type of green area in any type of commercial and residential projects. We can install automatic and manual operating irrigation system



SYPHONIC RAINWATER DRAINAGE

A syphonic system is a well-known cost-saving solution for drainage of large roof areas. The principle of expelling air from the system means that only water is transported at high speed, making use of the suction pressure created behind the full bore water column. The high speed full bore flow enables smaller pipe dimensions, compared to conventional systems. The elimination of multiple downpipes and a lot of piping in the groundwork translates into a large cost saving and greater architectural freedom for the building design.

This technology, initially developed for large roofs, is also extremely useful when applied to high-rise buildings that have a smaller roof but longer downpipes. Syphonic roof drainage on high-rise buildings enables savings on space and costs by reducing the number of required downpipes. These space savings are even more important on green buildings, where secondary piping systems for rainwater collection and re-use have to be installed in space-constrained service shafts.

- · Ensure to preserve single drop of water.
 - · Made of Virgin Raw Material.
- · Provide Technical Guideline for Installation.
- Fulfill BIS norms/standard for material and production Parameters.
 - · Life of PE Pipes more than 50 years.

WATECH ASSOCIATES LLP

- New Delhi 110035 India.
- info@watech.co.in
- mww.watech.co.in
- **3** 011 45075768

Authorized Dealer